487. La función $f\left( x \right)=\frac{x}{{{x}^{2}}+1}$ tiene derivada
a) ${{f}^{'}}\left(
x \right)=\frac{-{{x}^{2}}+1}{{{\left( {{x}^{2}}+1 \right)}^{2}}}$
b) ${{f}^{'}}\left(
x \right)=\frac{1}{{{x}^{2}}+1}$
c) ${{f}^{'}}\left(
x \right)=\frac{-2x}{{{\left( {{x}^{2}}+1 \right)}^{2}}}$
Calculando
dicha derivada como derivada de un cociente tendremos:
$f'\left(
x \right)\quad =\quad \frac{\left( x \right)'\cdot \left( {{x}^{2}}+1
\right)-\left( x \right)\cdot \left( {{x}^{2}}+1 \right)'}{{{\left( {{x}^{2}}+1
\right)}^{2}}}\quad =$
$=\quad
\frac{1\cdot \left( {{x}^{2}}+1 \right)-\left( x \right)\left( 2x
\right)}{{{\left( {{x}^{2}}+1 \right)}^{2}}}\quad =\quad
\frac{{{x}^{2}}+1-2{{x}^{2}}}{{{\left( {{x}^{2}}+1 \right)}^{2}}}\quad =\quad
\frac{-{{x}^{2}}+1}{{{\left( {{x}^{2}}+1 \right)}^{2}}}$
No hay comentarios:
Tu opinión importa, deja un comentario o anota tus dudas