442. La expresión $-2\left( \frac{1}{3}+\frac{5}{6} \right)+\left[ \left( \frac{1}{2}\cdot \frac{2}{3} \right)\div \left( \frac{5}{9}-\frac{4}{3} \right) \right]$ es igual a
a) ${}^{-58}\!\!\diagup\!\!{}_{21}\;$
b) $0$
c) ${}^{35}\!\!\diagup\!\!{}_{17}\;$
Operando:
$-2\left(
\frac{1}{3}+\frac{5}{6} \right)+\left[ \left( \frac{1}{2}\cdot \frac{2}{3}
\right)\div \left( \frac{5}{9}-\frac{4}{3} \right) \right]\quad =$
$=\quad -2\left(
\frac{1\times 2}{3\times 2}+\frac{5}{3\times 2} \right)+\left[ \left(
\frac{1}{2}\times \frac{2}{3} \right)\div \left( \frac{5}{3\times
3}-\frac{4\times 3}{3\times 3} \right) \right]\quad =$
$=\quad
-2\left( \frac{2}{6}+\frac{5}{6} \right)+\left[ \left( \frac{1\times
\not{2}}{\not{2}\times 3} \right)\div \left( \frac{5}{9}-\frac{12}{9} \right)
\right]\quad =$
$=\quad -2\left(
\frac{2+5}{6} \right)+\left[ \left( \frac{1}{3} \right)\div \left(
\frac{5-12}{9} \right) \right]\quad =$
$=\quad
-2\left( \frac{7}{6} \right)+\left[ \left( \frac{1}{3} \right)\div \left(
\frac{-7}{9} \right) \right]\quad =$
$=\quad
\frac{\left( -2 \right)\left( 7 \right)}{6}\quad +\quad \left[ \left(
\frac{1}{3} \right)\times \left( \frac{9}{-7} \right) \right]\quad =$
$=\quad
\frac{-\not{2}\times 7}{\not{2}\times 3}\quad +\quad \frac{1\times
\not{3}\times 3}{-\not{3}\times 7}\quad =$
$=\quad
-\frac{7}{3}\quad -\quad \frac{3}{7}\quad =\quad -\frac{7\times 7}{3\times
7}\quad -\quad \frac{3\times 3}{7\times 3}\quad =$
$=\quad
-\frac{49}{21}\quad -\quad \frac{9}{21}\quad =\quad \frac{-49-9}{21}\quad
=\quad \frac{-58}{21}$
No hay comentarios:
Tu opinión importa, deja un comentario o anota tus dudas