426. La expresión $\left[ \left( \frac{1}{2}-\frac{3}{4} \right)\cdot \left( \frac{1}{6}+\frac{3}{2} \right) \right]:\frac{-5}{12}$ es igual a
a) 1
b) ${}^{-25}\!\!\diagup\!\!{}_{144}\;$
c) -1
Operando:
$\left[
\left( \frac{1}{2}-\frac{3}{4} \right)\cdot \left( \frac{1}{6}+\frac{3}{2}
\right) \right]:\frac{-5}{12}\quad =$
$=\quad
\left[ \left( \frac{1\times 2}{2\times 2}-\frac{3}{2\times 2} \right)\cdot
\left( \frac{1}{2\times 3}+\frac{3\times 3}{2\times 3} \right)
\right]:\frac{-5}{12}\quad =$
$=\quad
\left[ \left( \frac{2}{4}-\frac{3}{4} \right)\cdot \left(
\frac{1}{6}+\frac{9}{6} \right) \right]:\frac{-5}{12}\quad =$
$=\quad
\left[ \left( \frac{2-3}{4} \right)\cdot \left( \frac{1+9}{6} \right)
\right]:\frac{-5}{12}\quad =\left[ \left( \frac{-1}{4} \right)\cdot \left(
\frac{10}{6} \right) \right]:\frac{-5}{12}\quad =$
\[=\left[
\left( \frac{-1}{4} \right)\times \left( \frac{10}{6} \right) \right]\times
\frac{12}{-5}\quad =\frac{\left( -1 \right)\times 10\times 12}{4\times 6\times
\left( -5 \right)}\quad =\]
\[=\ \ \frac{-\not{2}\times \not{5}\times
\not{2}\times \not{6}}{-\not{2}\times \not{2}\times \not{6}\times \not{5}}\quad
=\ \ 1\]
No hay comentarios:
Tu opinión importa, deja un comentario o anota tus dudas