415. ${{25}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}:{{5}^{{}^{-3}\!\!\diagup\!\!{}_{2}\;}}$ es igual a
a) ${{5}^{4}}\sqrt{5}$
b) ${{5}^{2}}$
c) $125\sqrt[3]{25}$
Teniendo
en cuenta las propiedades de las potencias de números reales:
${{25}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}:{{5}^{{}^{-3}\!\!\diagup\!\!{}_{2}\;}}\quad
=\quad \frac{{{25}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}}{{{5}^{{}^{-3}\!\!\diagup\!\!{}_{2}\;}}}\quad
=\quad {{25}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}\cdot
{{5}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}\quad =\quad {{\left( 25\cdot 5
\right)}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}\quad =$
$=\quad
{{\left( {{5}^{2}}\cdot 5 \right)}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}\quad =\quad
{{\left( {{5}^{2+1}} \right)}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}\quad =\quad
{{\left( {{5}^{3}} \right)}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}\quad =\quad
{{5}^{3\cdot \frac{3}{2}}}\quad =$
$=\quad
{{5}^{\frac{9}{2}}}\quad =\quad {{5}^{\frac{8}{2}+\frac{1}{2}}}\quad =\quad
{{5}^{\frac{8}{2}}}\cdot {{5}^{\frac{1}{2}}}\quad =\quad {{5}^{4}}\sqrt{5}$


No hay comentarios:
Tu opinión importa, deja un comentario o anota tus dudas