296. La
expresión $\left[ \left( \frac{1}{2}-\frac{1}{3} \right)\cdot \left(
\frac{5}{6}-\frac{7}{12} \right) \right]:\frac{1}{24}$ es igual a
a) ${}^{5}\!\!\diagup\!\!{}_{12}\;$
b) 1
c) ${}^{7}\!\!\diagup\!\!{}_{24}\;$
$\left[
\left( \frac{1}{2}-\frac{1}{3} \right)\cdot \left( \frac{5}{6}-\frac{7}{12}
\right) \right]:\frac{1}{24}\quad =$
$=\quad
\left[ \left( \frac{1\times 3}{2\times 3}-\frac{1\times 2}{3\times 2}
\right)\cdot \left( \frac{5\times 2}{6\times 2}-\frac{7}{12} \right)
\right]:\frac{1}{24}\quad =$
$=\quad
\left[ \left( \frac{3}{6}-\frac{2}{6} \right)\cdot \left(
\frac{10}{12}-\frac{7}{12} \right) \right]:\frac{1}{24}\quad =$
$=\quad
\left[ \left( \frac{3-2}{6} \right)\cdot \left( \frac{10-7}{12} \right)
\right]:\frac{1}{24}\quad =\left[ \left( \frac{1}{6} \right)\cdot \left(
\frac{3}{12} \right) \right]:\frac{1}{24}\quad =$
\[=\left[
\left( \frac{1}{6} \right)\times \left( \frac{3}{12} \right) \right]\times
\frac{24}{1}\quad =\frac{1\times 3\times 24}{6\times 12\times 1}\quad =\]
\[=\
\ \frac{\not{3}\times \not{4}\times \not{6}}{\not{6}\times \not{3}\times
\not{4}}\quad =\ \ 1\]
No hay comentarios:
Tu opinión importa, deja un comentario o anota tus dudas