120. La función
$f\left( x \right)={}^{1}\!\!\diagup\!\!{}_{\left( {{x}^{2}}+1 \right)}\;$ tiene
derivada
a)$f'\left(
x \right)={}^{2}\!\!\diagup\!\!{}_{{{\left( {{x}^{2}}+1 \right)}^{2}}}\;$
b)$f'\left(
x \right)={}^{2x}\!\!\diagup\!\!{}_{{{\left( {{x}^{2}}+1 \right)}^{2}}}\;$
c)$f'\left(
x \right)={}^{-2x}\!\!\diagup\!\!{}_{{{\left( {{x}^{2}}+1 \right)}^{2}}}\;$
Calculemos
dicha derivada como derivada de un cociente:
$f'\left(
x \right)=\frac{\left( 1 \right)'\cdot \left( {{x}^{2}}+1 \right)-1\cdot \left(
{{x}^{2}}+1 \right)'}{{{\left( {{x}^{2}}+1 \right)}^{2}}}=\frac{0\cdot \left(
{{x}^{2}}+1 \right)-\left( 2x+0 \right)}{{{\left( {{x}^{2}}+1 \right)}^{2}}}=$
$=\frac{0-2x}{{{\left(
{{x}^{2}}+1 \right)}^{2}}}=\frac{-2x}{{{\left( {{x}^{2}}+1 \right)}^{2}}}$
No hay comentarios:
Tu opinión importa, deja un comentario o anota tus dudas